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Pressure wave propagation in a granular bed
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The transmission of pressure waves in granular materials is complicated by the heterogeneity and nonlin-
earity inherent in these systems. Such waves are propagated through particle contacts primarily along the
“force chains” which carry most of the load in granular materials. These fragile and ephemeral chains coupled
with irregular particle packing lead to the observed heterogeneity. Nonlinearity in these systems is largely the
result of the force-deformation characteristic at particle contacts. Through experiments and simulations, we

study the effects of heterogeneity and nonlinearity on the properties of pressure waves through a granular bed.
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I. INTRODUCTION

Wave propagation within a granular medium is a compli-
cated process that is important not only in a broad range of
technological and natural contexts but also because of the
potential it has for the interrogation of the state of that me-
dium. While there are circumstances in which the interstitial
fluid plays an important role in the wave propagation (see,
for example, the fluidized bed research of Gregor and Rumpf
[1], Musmarra et al. [2], and Weir [3] or the shock waves of
Ben-Dor ef al. [4]) we choose to focus here on the simpler
circumstances of a relatively static bed in which the intersti-
tial fluid plays a negligible role. Rather the wave propagation
involves transmission through the particles and from particle
to particle through the contact points. Experiments on wave
propagation in beds of randomly arranged grains [5] and ma-
trices of specific packings [6] revealed propagation speeds
that, as expected, seemed to scale with the elastic wave speed
in the material of the particles (VE/p where E is the Young’s
modulus and p is the density) and showed little dependence
on particle size. The speed did seem to increase somewhat
with the overall constraining pressure or overburden pressure
p- An assumption of Hertzian contacts between the particles
[7.8] led Duffy and Mindlin [6] to theorize a speed that in-
creased like p!/°. The measurements follow this dependence
at higher pressures but the behavior at lower confining pres-
sures is more like p'"*. Goddard put forward two possible
explanations for this stronger dependence at lower pressures:
first, that conical asperities may dominate the interaction be-
tween particles and, second, that the coordination number
(the number of contacts) would increase as the pressure in-
creased [9]. These could explain the p'* dependence at
lower pressures. Makse et al. [10] conducted simulations that
supported the coordination number explanation; the simula-
tions also yielded wave speeds in good agreement with the
experimental measurements. We note that Velicky and Caroli
[11] proposed another explanation for the p'/* dependence
that identifies disorder-induced stress fluctuations as
responsible.
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However, any review of the literature will clearly unveil a
disturbingly broad range of measured values for the wave
speed in granular beds particularly at lower pressures and it
is difficult to correlate this range with the material properties
involved. At low pressures the wave speeds range from
50 m/s [12] to 210 m/s [5] to 500 m/s [13] for glass or
sand (see Ref. [14] for details). Stresses in a static granular
bed are carried by “force chains,” preferentially stressed
chains of particles that are responsible for the nonisotropic
distribution of stress in a granular material [15,16]. Stress
waves are therefore propagated primarily along these force
chains. The complication is that force chains can be altered
as a result of very small perturbations. This heterogeneous
and ephemeral nature of a granular bed is one possible ex-
planation for the above-described discrepancies. It leads to
complicated and often elusive wave propagation characteris-
tics that are the subject of this paper.

Liu and Nagel investigated wave propagation in a bed of
5-mm glass beads using an accelerometer of a size compa-
rable to an individual grain; thus they were detecting the
wave transmitted through a single force chain. Though the
waves seemed to be nondispersive in a general, average
sense, the experiments yielded wave speeds that were highly
susceptible to very small perturbations in the bed. This sug-
gested an extreme fragility in the force chain microstructure;
indeed the stress waves may themselves be altering that
structure and therefore the local wave speed [17]. Jia et al.
further addressed these issues and distinguished between
propagation at low frequencies where the wavelength is long
compared with the particle size and waves in several force
chains will retain coherence. In contrast, waves at high fre-
quency where the wavelength is comparable with the particle
size will lack coherence at any detector [13]. Later we refer
to this limit of Jia er al. which, according to their analysis,
would occur around 50 kHz for 4-mm glass beads.

The purpose of this paper is to delve further into these
intricate complications of wave propagation in a granular
material, utilizing wave propagation measurements and
simulations in beds of particles of different size and material.
In addition to the wave propagation speed, we also examine
the attenuation which is of considerable technological inter-
est since granular materials are often used for acoustic insu-
lation. There are several mechanisms by which wave energy
is dissipated in a granular medium. Energy is clearly dissi-
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FIG. 1. Schematic of the experimental setup.

pated through frictional and inelastic particle interactions. In
addition energy may be dissipated by irreversible particle
rearrangement. Third, the wave energy may be scattered dur-
ing propagation through the particle contact network. The
literature contains few measurements or analyses of attenua-
tion, perhaps because, as we shall see, the results are even
more scattered than those for the speed.

II. EXPERIMENTS

The experiments (Fig. 1) utilized several clear, Plexiglas
boxes (25X 25 cm? or 84 X 25 cm? in planform) filled with
granular material to a depth of 16.5 cm by pouring in par-
ticles while avoiding any unnecessary compaction of the bed.
This procedure defined the loose state of the bed. A circular
piston (diameter 10 cm, thickness 0.64 cm, center 8 cm
above floor) driven by an electromechanical shaker was used
to propagate wavelike disturbances horizontally across the
box. The vibration frequencies ranged from Hz to kHz, and
the amplitudes were monitored by an accelerometer attached
to the back of the disk. Two strain-gauge pressure transduc-
ers with active faces 1.9 cm in width were buried in the bed
at the same depth but at different distances from the piston.
The near transducer is typically placed 50 mm from the pis-
ton, and the far transducer is located 50 mm or more beyond
this point. They are held fixed from above with laboratory
clamps and offset laterally so that the near transducer mini-
mally obstructs the propagation of the signal to the far trans-
ducer. The clamping was needed to avoid transducer move-
ment and had little effect on the transducer results. Finally,
the entire apparatus was mounted atop a second electrome-
chanical shaker which provides agitation of the bed through
vertical shaking. This was used in the experiments for two
purposes. To create a consolidated bed state, the bed was
shaken for several minutes at a frequency of 20 Hz and an
acceleration amplitude over 1g. During this time, the height
of the granular surface decreased by about 1 cm. The result
was termed a consolidated state. A second use of shaking
was to create an agitated state in which to make measure-
ments and observations; the results of this investigation are
reported in a separate paper.

Because of concerns about wave reflection from the box
walls, the box was lined with foam. However, this had no
discernable effect on the results since the wave attenuation
was sufficiently high that almost all of the wave energy was
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TABLE 1. Material properties of the granular materials used in
the experiments.

Material Shape p(kg/m3)  E(GPa) v co(m/s)
Glass Spherical 2500 70.3 0.220 5300
PVC Cylindrical 1500 2.75 0.420 1350

dissipated before a wave could complete a reflection. In most
cases, the foam was only used behind the piston between it
and the box wall because that represented the shortest reflec-
tion path. Moreover, in this configuration, grains only con-
tacted the front face of the piston and thus the piston was less
constrained.

Measurements of the wave speed in the granular bed were
made for both single input pulses and for continuous sinu-
soidal pulsing. In both the difference in the arrival time of
the wave at the two transducers was used to determine a
wave speed and the ratio of the measured wave amplitudes
was used to determine an attenuation rate. In the single-pulse
experiments, the wave arrival time was measured directly:
this is done by identifying the time at which the pressure
departed significantly from its static value. In the continuous,
sinusoidal input experiments, the phase shift between the sig-
nals arriving at the two transducers was found by cross cor-
relation. In the graphs which follow the attenuation is pre-
sented using values of & defined by

&= (1)

X =x
where Ap, and Ap, are the transducer output amplitudes
measured at distances x; and x,, from the piston.

A variety of granular materials were used in the experi-
ments, and their properties are listed in Table I. The glass
beads with diameters ranging from 0.3 to 5 mm allowed for
the examination of particle size effects. The plastic particles
permitted the evaluation of different material properties, as
characterized by E and p, and the effect of particle geometry.
In contrast to the uniform, spherical geometry of the glass
beads, the PVC particles were cylindrical with dimensions of
1 mmX3 mm. It seems likely that the angularity of
their contacts would affect the packing and rearrangement
characteristics.

III. SIMULATIONS

Computer simulations were also carried out using a soft-
particle, discrete element method (DEM) similar to others
used in granular flows [15]. The program tracks a specified
number of discrete elements (particles), advancing each by
integrating the equations of motion. At any instant in time,
the entire state of each particle is known. The particles are
soft in the sense that collisions between particles (and be-
tween particles and the walls) have a nonzero collision time.
This is in contrast to hard-sphere models (see, for example,
Ref. [18]) in which collisions are binary and instantaneous,
with resulting velocities determined by a coefficient of
restitution.
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FIG. 2. Schematic of the simulation cell. Most of the simula-
tions were conducted with a depth of about 77 particle diameters
and a width of 50 particle diameters.

Soft-particle methods require a contact model to describe
the forces throughout the collision process. The present
simulations used a contact model comprised of the follow-
ing.

(i) An elastic, Hertzian spring (force=K,5%%) where & is
the particle overlap. Hertzian theory [8] gives K,
:2ER;}%/ 3(1-v?) where E is Young’s modulus of elasticity,
v is Poisson’s ratio, and R,;=R R,/ (R,+R,) is the effective
radius of the colliding bodies of radii R; and R, (assumed
composed of the same material).

(ii) A normal motion damper as in the model of Brillian-
tov et al. [19] such that the total outward normal force F, is
given by

1/2 12
p oo 2ER on  EARg pd0 2)
T 3(1-17) (1= dt’

where the quantity A is related to material properties. Since
the coefficient of restitution depends directly on this damp-
ing, the factor A was chosen to yield an appropriate coeffi-
cient of restitution.

(iii) A tangential spring similar to that used by Wassgren
[20]. This tangential force increases linearly with a spring
constant k, until it reaches wF, where u is the coefficient of
friction. Above this value it is set equal to uF,. The tangen-
tial spring constant k, was chosen to be one-tenth of a “nor-
mal spring constant” calculated by linearizing the Hertzian
relation about a mean contact force given by the weight of
material above that particular depth.

The time step interval was chosen to be one-tenth (or less)
of the smaller of (1) the natural oscillation period of a par-
ticle and (2) the typical Hertzian contact time [7]. For further
details the reader is referred to Ref. [14]. The above model is
essentially quasistatic; we note the conditions listed by Nes-
terenko [21] for such a quasistatic model to apply—namely,
(1) the material stresses in the particles should be less than
the elastic limit, (2) the contact surfaces should be much
smaller than the particles, and (3) the typical collision dura-
tion should be much larger than the natural oscillation period
of particle distortions.

A schematic of the simulations is included as Fig. 2. They
are two dimensional but use the masses and moments of
inertia of spherical particles. Those reported herein used
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4000 particles with some polydispersity in size (up to 10% in
the diameter), a box width of 50 particle diameters, the
above-mentioned ratio of tangential to normal spring con-
stants, a value of A"=0.7 (corresponding roughly to €=0.8
though e will be velocity dependent), and a parameter

pgD/E=1.74x107°. The initial conformation of the bed is
created by starting with the particles in a noncontacting array
with random velocities and allowing the particles to sedi-
ment into a packed state.

Waves are created by moving the left wall, either in a
sinusoidal or pulsed manner. For sinusoidal motion, the fre-
quency and maximum displacement of the piston are speci-
fied. The single pulses (total width 7)) are triangular in ve-
locity and consist of a period of constant positive
acceleration followed by an equal period of negative accel-
eration of the same magnitude. Waves were detected in the
bed with simulated pressure transducers in which the pres-
sure is evaluated over some specified area of the container
wall; any number of these sensors could be defined. After the
initial settling phase of the simulations, the static pressure
varies linearly with depth but only in an averaged sense.
Even within one initialization of the bed, there is significant
variation in the pressure at a particular depth and that scatter
increases with depth. When considered in conjunction with
the variation in stiffness implicit in Hertzian contacts this
yields substantial point-to-point variation in the wave veloc-
ity.

IV. NONDIMENSIONALIZATION

Most of the results of both the experiments and the simu-
lations are presented nondimensionally, and we consider here
some dimensional analyses. The results presented were non-
dimensionalized using an average particle mass /m (or density

p), an average particle diameter D, and an elastic wave speed
within the particles, co=VE/p. The dimensionless normal

force becomes F,=F,D/iicj, the dimensionless overlap is
8°=5/D, the dimensionless pressure per unit breadth is given
by p* =p52/n_1c8, and the dimensionless time is "=cyt/D. It
follows that in the contact *rnodel, *Kz and 7 are replaced by
dimensionless quantities K, and 7', defined by

DK, 4
K,= = R, 3
2 n_1c(2) w(1 =12 3
. D¥y 6
= = R¥2A™, 4
K icy, w1 -1 eff “)

where A*=cyA/D and R:ff is 1/2 for a particle-particle col-

lision and 1/4 for a particle-wall collision. These dimension-

less parameters are functions of only v and the coefficient of

restitution. The expression corresponding to Eq. (2) then be-

comes

. AR? 6R.;PA" . ,d5

F,= eff 5 532 4 eff 5-&1/2_*' (5)
(1 -v°) w(1-17) dt

For reference purposes note that while A*=0 clearly yields

collisions that are fully elastic in the normal direction, a

031303-3



S. R. HOSTLER AND C. E. BRENNEN

max |

Pressure

0 0.02 004 006 008 0.1
Time (s)

FIG. 3. Typical signals recorded by the two transducers as a
result of a single input pulse. The point used to calculate the arrival
of the wave is shown with a square. The width of the wave is
determined at the location of the circles.

value of A"=10 produces highly dissipative collisions with
no appreciable rebound.

More generally, in an infinite domain of grains of size D,
Poisson’s ratio v and coefficient of restitution, €, dimensional
analysis yields a wave speed that must be proportional to
VE/p where the dimensionless factor of proportionality can
only be a function of v, €, and the geometric configuration
of the grains. Therefore, provided the deformations remain
elastic, the acoustic speed will be independent of the particle

size D; in the absence of damping, the dimensionless acous-
tic speed will only be a function of v and the configuration or
packing of the grains.

The dimensionless damping £D should also be a function
only of €, v, and the configuration. Then ¢ should scale with

1/D; we return to this discussion the experimental results.

V. EXPERIMENTS WITH PULSED INPUT

The single-pulse experiments utilized simple compressive
piston displacements that were unidirectional and returned to
zero displacement at the end of the pulse. They are best
characterized by the pressure pulse at the first transducer as
exemplified by Fig. 3; the amplitude Ap is the difference
between the maximum pressure p,,,, and the initial static
pressure po; the pulse width is measured at one-half of that
amplitude. Pulse widths varied between 1 ms and 100 ms,
and amplitudes up to 3 kPa were examined. Wave propaga-
tion speeds were derived from the delay between first arriv-
als at the two transducers. First arrival was judged by a
small, nonnoise departure from the ambient pressure p, as
indicated in Fig. 3. The oscillations that follow the initial
peak in Fig. 3 were typical, and more discussion of these is
delayed until Sec. IX B.

The spatial decay of the pulsed wave is plotted in Fig. 4
for both glass and PVC particles. Clearly, the attenuation is
substantially larger in the PVC with decay rates over twice
that in the glass. However, all these attenuations are large in
an absolute sense; for example, a pulse in the 3-mm glass
was completely attenuated at a distance of 420 mm from the
piston. The increased scatter at the smallest transducer spac-
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FIG. 4. Pressure amplitude ratio decay with increased distance
between the transducers. The near transducer, with pressure ampli-
tude Ap;, is fixed at 50 mm from the piston while the far transducer
is moved. Results for both 3-mm glass beads (O) and PVC cylin-
ders ([J) are shown. Each point is the mean of several points, and
error bars show the standard deviation of the measurements. Also
shown are lines corresponding to é=9 m~' and 18 m™'.

ing is a result of the comparably few particles that fill such a
small space. Fewer particles lead to a small number of idio-
syncratic wave paths.

In one set of experiments, the input pulse amplitude
was held fixed and the duration of the pulse (the input pulse
width) was varied from 2 ms to 66 ms. At each setting of the
width, four consecutive pulses were documented. If the bed
were changing with time as a result of the pulses altering the
force chains, the data would change between consecutive
pulses. The effect of input pulse width on the shape of the
detected pressure waves is illustrated in Fig. 5. For small
input pulse widths, the wave consists of a single peak as in
Fig. 3. The 4-ms and 14-ms pulses in the PVC and the
6-ms pulse in the glass beads are additional examples of such
waves. This initial peak is followed by a series of oscillations
around the static pressure value. As the input pulse width is
increased, two changes are observed. First, the amplitude of
the detected wave increases primarily because the dynamics
of the piston drive allows more energy to be inserted during
this longer pulse. More pertinent is the second effect—
namely, the splitting of the individual peak into multiple
peaks which is most evident between the 14-ms and 41-ms
pulses. The largest input pulse width, 66 ms, shows that the
additional peaks are oscillations, similar to those occurring
about the static pressure value after the shorter single pulses
have passed.

Figure 6 (top) presents the variation in the detected
wave width with input pulse width and indicates two distinct
regimes. For larger input pulse widths [greater than
T::l X 10* (T,=20 ms)], the detected width scales with the
input pulse width as one would expect. In this range, the
wave width is always less than the pulse width, a result
of measuring the wave width at the half-height. The more
intriguing regime is at small input pulse widths [less
than T;:S X 10* (T,=10 ms)]. Here, the detected wave
width is independent of the input pulse width. Regardless
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FIG. 5. Wave shapes at 50 mm from the piston for a fixed input
pulse amplitude and four different input pulse widths. Top: PVC
beads. Bottom: 3-mm glass beads.

of the input pulse width, the width of the detected wave is
T,=5%10% (T,,=10 ms). This corresponds to a disturbance
with a frequency of roughly 50 Hz. Waves in this regime are
“semipermanent” waves for which the input conditions have
little effect on the wave shape (we use “semipermanent”
rather than the conventional “permanent” because of the
large attenuation). Semipermanent waves were also observed
in simulations (see Sec. VI), where the wave width was
nearly the same regardless of the shape or size of the pulse
that created it. Further discussion on these semipermanent
waves is delayed until Sec. IX A.

The bottom portion of Fig. 6 shows the ratio of the wave
widths measured at the two transducers. Over most of the
range of input pulse widths, wave broadening occurs. That is,
the width measured at the far transducer is greater than that
measured at the near transducer. Only the smallest input
pulse widths show the opposite trend, and these points have
a substantial uncertainty because of the weakness of the sig-
nals for these short pulse widths.

A second set of experiments was carried out to examine
the effect of increasing the input pulse amplitude on the mea-
sured properties of the waves. The width of the input pulse
was fixed and the pulse amplitude was varied.

Typical results in Fig. 7 (top) show the relationship be-
tween the voltage specified at the pulse generator and the
pressure amplitude of the waves measured in the granular
bed. For the smaller pulse amplitudes at the near transducer
and at all pulse amplitudes for the far transducer, the mea-
sured wave amplitude increases in a regular monotonic man-
ner as the input pulse amplitude is increased. However, for
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FIG. 6. Top: width of the detected pulse in PVC particles at
transducers 50 mm (O) and 100 mm ([J) from the piston as a func-
tion of the input pulse width. Bottom: the ratio of these pulse
widths.

input pulse amplitudes greater than a critical value, the mea-
surements at the near transducer begin to be scattered and the
regular growth trend is broken with the wave amplitudes
actually decreasing with increasing pulse amplitude. These
behaviors are consistent with force chain rearrangement at
the larger wave amplitudes. If one of the multiple force
chains connecting the source and detector was broken, one
would expect a drop in the measured pressure. Moreover,
time-varying particle arrangements would account for the in-
creased scatter. The fact that neither of these effects is seen at
the far transducer further supports the hypothesis that particle
rearrangement is occurring where the wave amplitude is
large.

The width of the detected wave increases only modestly
with increasing input pulse amplitude. This weak depen-
dence is illustrated in Fig. 7 (bottom) which demonstrates
that even within the semipermanent regime, the wave width
still changes, albeit slightly, with the pulse amplitude. The
scatter in the data increases at the largest pressure
amplitudes.

The wave speeds measured in both the constant input am-
plitude and the constant pulse width experiments are pre-
sented in Fig. 8 where they are plotted against the amplitude
of the wave detected at the near transducer. For all experi-
ments, the measurements contain a substantial scatter that
seems inevitable with ephemeral force chains and is particu-
larly evident for the 3-mm glass particles. On average, the
speed in the PVC particles is around 60 m/s; in the glass
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FIG. 7. Wave amplitude (top) and wave width (bottom) as
functions of the input pulse amplitude for a fixed input pulse
width of 6 ms. Measurements are made at transducers 50 mm (O)
and 200 mm (OJ) from the piston in a bed of PVC cylinders.

beads the speed is higher, averaging about 120 m/s. Though
the scatter is large, there is no clear indication of the wave
speed changing with increasing wave amplitude.

One would expect consolidation of the granular bed to
have a significant effect on its wave propagation characteris-
tics. The denser state that results from consolidation leads to
an effectively stiffer bed and reduces the possibility of rear-
rangement. Details of the consolidation procedure used in the
present experiments can be found in Ref. [14].
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FIG. 8. Wave speed as a function of the wave amplitude mea-
sured at the near transducer. Both constant amplitude [PVC (<),
3-mm glass ((J)] and constant width [PVC (A), 3-mm glass (@)]
experiments are plotted.
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FIG. 9. Wave amplitude measured at 50 mm from the piston for
an unconsolidated (O) and a consolidated (CJ) bed. Materials: PVC
(top) and 2-mm glass spheres (bottom).

Figure 9 compares the measured wave amplitudes in con-
solidated and unconsolidated beds for both the PVC cylin-
ders and 2-mm glass spheres. The same effects of bed rear-
rangement that were seen in Fig. 7 can be seen here. The
regular increase in the wave amplitude with input pulse am-
plitude gives way at the larger pulse amplitudes to irregular,
scattered data at the near transducer. In the glass particles,
consolidation limits this effect. The linear increase in the
wave amplitude continues past the point at which the data
from the unconsolidated bed begins to diverge and scatter. It
could be that the denser, consolidated bed impedes the piston
motion and prevents magnitudes of the pressure disturbance
for which rearrangement occurs. This cannot be the full ex-
planation since the measured wave amplitude exceeds that at
which the unconsolidated bed begins to scatter. It could also
be that the consolidated bed is less fragile, so relative particle
motion is less likely. The data from the bed of PVC particles
show the same scatter regardless of consolidation. This may
be a result of the relatively irregular shape of the PVC par-
ticles compared to the spheres. Force chains constructed
from the cylinders may be less stable than those made from
spheres.

The attenuations that correspond to the wave amplitude
data in Fig. 9 are shown in Fig. 10. Consolidation consis-

031303-6



PRESSURE WAVE PROPAGATION IN A GRANULAR BED

PHYSICAL REVIEW E 72, 031303 (2005)

25 x 10
888%g ° i
g 8 o I
o %
- 8 o) &
g 20t =
Il
g o®ogd *
=9
op &
15
0 0.5 1 1.5 2 2.5 0 2000 4000 6000
Near wave amplitude (kPa) t* = eot/D

25 o oa
°68 ®o
é’g:f@ o,

T /8p8 ¥ %8

g 20f

- |y
a

u]

E

0 0.5 1 1.5 2 2.5
Near wave amplitude (kPa)

15

FIG. 10. Attenuation in an unconsolidated (O) and a consoli-
dated (OJ) bed with increasing initial wave amplitude. Materials:
PVC (top) and 2-mm glass spheres (bottom).

tently reduces attenuation in both materials and reduces the
scatter in the data.

The results of wave speed measurements in both consoli-
dated and unconsolidated beds for both PVC and glass are
plotted in Fig. 11. For both materials consolidation notice-
ably increases the wave speed as expected.

VI. SIMULATIONS WITH PULSED INPUT

In this section, we examine the general characteristics of
pulsed waves in the simulations and discuss the broad

FIG. 12. Wave shape resulting from a pulsed movement of the
left wall. Ratio of input displacement to static deformation is of
order 10. Pressure is measured on sensors (10 particles high) on the
right wall 50 particles (solid line) and 20 particles (dashed line)
above the bottom with the bed free surface at 76 particles above the
bottom. The pulse width is shown on the left of the plot.

waves that result from a pulsed movement of the left wall of
the simulation cell are shown in Fig. 12 and consist of a
smooth positive pressure peak followed by a series of oscil-
lations. This was found to be a general trend. As in the ex-
periments, changes in the input pulse width over several or-
ders of magnitude changed the detected transmitted wave
width only slightly.

Qualitative differences are seen in the wave structure as
the amplitude of the input pulse is increased. Figure 13
shows the shape of the wave at the two detectors for an input
pulse 10 times larger than that shown in Fig. 12. The wave is
characterized by a comparatively steep leading edge that re-
sembles a shock front. The trailing edge is less steep, but still
tends to zero rather quickly with none of the oscillations that
were observed for the smaller amplitude wave. This drop to
zero pressure is a result of a much stronger reflection of the
wave from the right wall. Zero pressure implies that the par-
ticles at the detector momentarily lose contact with the de-
tector as they recoil from the wall. An enlarged view of the
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FIG. 11. Wave speed in beds of 2-mm glass and PVC particles.
Results are shown for both the unconsolidated [glass (@), PVC
(A)] and consolidated [glass ({J), PVC (< )] states of each bed for
increasing initial wave amplitude.

FIG. 13. Wave shape for a comparatively large amplitude pulse.
Ratio of input displacement to static deformation on the order of
100. Pressure is measured on sensors (10 particles high) on the right
wall 50 particles (solid line) and 20 particles (dashed line) from the
bottom with a bed free surface at 76 particles. Inset is a detailed
view of region behind the wave in which the pressure drops to zero.
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FIG. 14. Transmission of a pressure wave in a static granular
bed. Frames taken at intervals of ¢ =250.

zero-pressure region of the signal, as shown in the inset of
Fig. 13, does reveal some collisional activity. The amplitude
of these collisional peaks (Ap“~4 X 107°) is three orders of
magnitude smaller than the wave amplitude, and the width of
these peaks, in dimensionless time units, is in the range t
=50-70. Such widths, as well as the shape of the pressure
spike, are consistent with measurements made by Zenit [22]
for the collision of a particle on the face of a high-frequency
response pressure transducer.

Since the state of each particle is known entirely, an al-
ternative way of visualizing the wave is to look at the instan-
taneous force between particles. Figure 14 is the result of
such a visualization for the pulsed wave with a moderate
pulse amplitude shown in the pressure traces of Fig. 12.
Shading codes the magnitude of the net horizontal force on a
given particle. Black corresponds to zero force, and white
corresponds to a force value of F,=5X 107, The effect of
the pulsed motion of the left wall is seen in the first frame.
The displacement of the wall creates a wave front that is
parallel to the wall. As the wave propagates, the curvature of
its front increases due to greater wave speed at greater depth.
Another notable feature of the wave front is its irregularity
which might be expected due to the heterogeneous nature of
the bed. The size of the irregularities appears to grow with
time. In the first frame, there are variations in the location of
the front on the order of one particle diameter with some
features deviating by as many as two particle diameters. By
the third frame, irregularity elements are typically three par-
ticles diameters in size, but can be as large as six diameters.

The effect of dissipation is also seen as the wave evolves.
The energy input into the bed is initially focused in a narrow
band near the wall as denoted by the high concentration of
white particles. By the third frame, this energy is spread over
nearly the entire width of the bed, leading to a reduction in
the magnitude of the forces between particles. The combina-
tion of this energy diffusion with energy lost to inelasticity in
the particle contacts leads to a net dissipation of the energy
of the coherent wave detected at the pressure sensor.

For times later than those depicted in the three frames of
Fig. 14, some reflection of the wave from the right wall can
be seen. After the first reflection, the wave becomes so weak
and scattered that it can no longer be tracked as a coherent
entity. Since no additional reflections can be observed, it is
likely that the oscillations in the pressure traces are not due
to reflections within the cell but to vibration of the force
chains as has been hypothesized in the discussion of the ex-
periments (see Fig. 21).

The computer simulations were also used to determine
some of the specific functional dependences. Using a base
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FIG. 15. Wave speed measured at detectors 20 (O) and 50 (OJ)
diameters from the bottom of the cell for various values of Pois-
son’s ratio (top) and of the maximum input pulse displacement, d;ax
(bottom). Five samples were taken for each v value. The average of
the resulting speeds is plotted with the standard deviation shown by
error bars.

line set given by »=0.220 and A*=0.7 and a pulse with a
displacement d, =4X107* and duration 7"=80, each of
these four quantities was varied in turn to determine the
functional consequences. First, the dependence of the wave
speed on Poisson’s ratio is shown in Fig. 15 (top). The speed
increases only slightly with v for typical values in common
materials (the experiments had v values in the range 0.22—
0.42). The data in Fig. 15 (top) also show that the depth of
the measurement in the bed has a significant effect on the
wave speed. Depth increases the static pressure at which the
wave speed measurement is made. The difference in the
wave speed with depth is consistently greater than the scatter
in the data. Figure 15 (bottom) shows the dependence of the
wave speed on the displacement (amplitude) o, of the input
pulse. With increasing input pulse amplitude the wave speed
increases by about 50% as d, . is increased from 1X107*
(the smallest value for the waves could be accurately mea-
sured) to 1 X 1072 (about 10% of the size of a particle). As
might be anticipated, the wave speed ¢” exhibits no signifi-
cant dependence on the dissipation factor for expected A”
values between 0 and 1. Note also that the wave speed was
only weakly dependent on the input pulse duration T;, de-
creasing by about 20% as the duration was increased by two
orders of magnitude from T;:S to T;:SOO.

The variation of the wave amplitude with input pulse dis-
placement, Fig. 16 (top), is similar to that observed in the
experiments (see Fig. 7). At small displacements, the wave
amplitude increases linearly with input pulse displacement.
The slope is steeper for the measurement made deeper in the
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FIG. 16. Top: wave amplitude Ap” for various values of the
maximum input pulse displacement d, . Bottom: wave width T,
for various values of the input pulse width T". Measurements at
detectors 20 (O) and 50 ((J) diameters from the bottom of the cell.
Five samples were taken; the average is plotted with the standard
deviation shown by error bars.

bed. The scatter in the data increases with increasing pulse
amplitude. For the largest pulse displacements, the growth of
the wave amplitude is no longer linear. The wave amplitude
tends to level off at both detectors. In the experiments, the
wave amplitude was seen to increase initially and then de-
crease unpredictably at large input pulse amplitudes. As in
the experiments, these effects and the increased scatter with
amplitude are due to bed rearrangement in the simulations.

The dependence of the wave width on the input pulse
width is shown in Fig. 16 (bottom). At the lower input pulse
widths, the wave width is constant and independent of the
input pulse width whereas, above T;=200, the wave width
increases linearly with the width of the input pulse. This is
precisely the behavior observed in the experiments (Fig. 6)
with the constant width at lower input widths being charac-
terized as semipermanent waves.

VII. EXPERIMENTS WITH CONTINUOUS INPUT

We now shift attention to the experiments and simulations
that employed continuous sinusoidal excitation. Two types of
experiments were performed, the first by varying the excita-
tion frequency while maintaining a constant piston accelera-
tion amplitude. The intent is to establish the dispersion rela-
tion for the granular bed. Later, the results of performing
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FIG. 17. Phase speed (top) and attenuation & (bottom) measured
at constant acceleration values of 0.20g (solid line) and 0.30g
(dashed line) in 4-mm glass beads at a spacing of 39 mm.

experiments at a constant frequency while varying the am-
plitude will demonstrate the fragility of the bed and its sus-
ceptibility to force chain rearrangement as a result of distur-
bances as weak as the input pressure waves [17].

A. Constant-amplitude experiments

Figure 17 (top) is a typical result for the phase speed
obtained from the constant-amplitude experiments by cross
correlation of the transducer signals. In an overall way, the
results tend to confirm the nondispersive character of wave
propagation in a static granular bed as previously described
by Liu and Nagel [23]. Measurements were made at two
different input acceleration amplitudes, one immediately af-
ter the other at each frequency; hence particle rearrangement
between the two amplitudes was minimized. This limited
change in amplitude had little effect on the phase speed.
However, Fig. 17 does show significant local departures
from the mean propagation speed. The large departures at
frequencies below about f*=4X 107 (f=500 Hz) could be
attributed to resonant frequencies within the box (a half-
wave in a 25 cm width with ¢=170 m/s gives a resonance at
340 Hz) or to resonance frequencies of the piston assembly.
The natural frequency of the piston and rod connecting it to
the shaker was measured with an impact hammer and found
to be 300 Hz. The natural frequency of the piston disk alone
was measured as 400 Hz. But the significant variations in the
wave speed at higher frequencies are inherent to these ex-
periments. They occur between one experiment and the next
under superficially identical conditions and are likely due to
the specific and idiosyncratic contact stress distribution per-

031303-9



S. R. HOSTLER AND C. E. BRENNEN

0.06
0.05 4
" | |
5 0.04 *
™
s 003t ™ ] ¥
[ | |
*
= 002 -
0.01
0
0 1 2 3 4 5
Particle Size (mm)
30
k
L | |
25}
| |
* u
=
<~ 20 *
|
£ ™
w15
| |
10} ¢ n
5
0 1 2 3 4 5

Particle Size (mm)

FIG. 18. Summary of the group velocity (top) and the attenua-
tion (bottom) as functions of particle size. Data shown for PVC
cylinders () and glass spheres: unconsolidated (M), increased
overburden (@), and consolidated (%).

taining in each experiment. As Liu and Nagel showed these
distributions are fragile and ephemeral [17]. Averaging of
multiple experiments causes these variations (and the disper-
sion they might imply) to disappear.

Evaluating the average phase speed at frequencies greater
than f"=4 X 10~ yielded the group velocities presented in
Fig. 18 (top) for a variety of granular materials and experi-
mental conditions. For the glass particles, the resulting group
velocity is about U*=0.03 (U=170 m/s) for nearly all par-
ticle diameters, bearing out the size independence of the
wave velocity anticipated in Sec. IV. An exception is the
point at U"=0.046 which can be attributed to a poor curve fit
and the data points at the largest particle sizes where there is
significant spread in the measurements. To measure the wave
speed accurately, averaging must be done over multiple force
chains. As the particle size increases relative to the fixed size
of the transducer face, this averaging procedure begins to fail
since few particles and few force chains are in contact with
the transducer face. Specifically, the coherence of the aver-
aging begins to break down for 4-mm particles and by 5 mm
the accuracy of the measurement is severely reduced.

The strongest observed influence on the group velocity is
the material composition of the particles, and the measure-
ments in the PVC particles demonstrate this (U =65 m/ s).
Scaling the group velocity in Fig. 18 (top) by ¢o=VE/p par-
tially accounts for the difference in material composition, but
differences in v between the two materials may be respon-
sible for the remaining discrepancy in the values. The data in
Fig. 18 (top) also show that consolidation and an increase in
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the overburden increase the group velocity as expected. The
group velocities obtained in these continuous excitation ex-
periments are comparable to those obtained in the single-
pulse experiments (see Figs. 8 and 11). As long as the group
velocity is measured on the coherent part [13] of the wave
these measurements should correspond. Attenuation is so
large in our system that the coherent portion of the wave is
all that remains at the point of measurement.

The measurements of the attenuation £ in Fig. 17 (bottom)
display considerable irregularity. Even with small changes in
the frequency, the attenuation varies by as much as a factor
of 3. There is, however, a general increase in the attenuation
with increasing frequency as might be expected. (Consolida-
tion does not lead to any consistent trend in the attenuation.)
Attenuations averaged over the entire frequency range are
presented in Fig. 18 (bottom) and are largely independent of
particle size (the 4- and 5-mm glass particles produce scat-
tered results for the same reasons as in the group velocity).
Consequently, the attenuation does not appear to scale with

1/D as suggested by the dimensional arguments of Sec. IV. It
seems clear that though the dynamics of the contact model
give reasonable values for and scaling of the wave speeds
(and therefore the normal stiffness seems correct), the attenu-
ation and therefore the damping and perhaps the tangential
components of the model are not adequate.

B. Constant-frequency experiments

Constant-frequency experiments provide some insight
into the role that bed rearrangement has on wave propaga-
tion. The experiments were performed by first increasing the
amplitude and then decreasing it. Figure 19 shows the effect
of rearrangement by comparing an initially unconsolidated
bed (in which relative particle motion is more likely) with a
consolidated bed. In the unconsolidated case, the measured
wave speed takes different values during the increase and
decrease of the input acceleration level. Near the middle of
the acceleration range, the difference is large, as much
100 m/s. This discrepancy is attributed to particle rearrange-
ment in the granular bed. The act of passing pressure waves
of increasing amplitude through the bed breaks and reforms
the particle chains that serve as wave paths. In contrast, the
consolidated case gives nearly the same speeds during in-
crease and decrease. Further evidence of particle rearrange-
ment can be seen in the scatter of the data. The scatter for the
unconsolidated case is generally much larger than that for the
consolidated case. Also, the scatter for the unconsolidated
bed increases with piston acceleration amplitude. One would
expect a larger force input at the piston to disturb more force
chains and increase the variability of the data.

Despite these irregularities in the wave speed as the input
acceleration is increased, some repeatability does exist at the
largest amplitudes. Above accelerations of 0.3g, the wave
speed in the unconsolidated bed takes a consistent value dur-
ing both the increase and decrease of the piston amplitude.
This suggests that, at large amplitudes, the waves themselves
establish some uniformity in the state of the material near the
piston.

Trends in the attenuation are similar, but more exagger-
ated, as seen in Fig. 19 (bottom). Again, rearrangement ap-
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FIG. 19. Mean phase speed (top) and attenuation (bottom) for an
unconsolidated bed (O) and a consolidated bed (CJ) as the accelera-
tion amplitude of the input wave is increased and then decreased.

pears to lead to a lack of repeatability in the unconsolidated
bed. Indeed, there is no consistency between measurements
taken during amplitude increase and decrease at any value of
the amplitude. A different mean value of the attenuation ratio
is found over the entire range of accelerations. The scatter in
the data is again suggestive of bed rearrangement. For the
unconsolidated case, the scatter in the attenuation data in-
creases slightly with acceleration. In contrast, the consoli-
dated bed has less scatter and the scatter is roughly the same
at all amplitudes.

VIII. SIMULATIONS WITH CONTINUOUS INPUT

Simulations were also carried out with continuous excita-
tion. The pressures recorded at both walls were sinusoidal in
shape, smooth, and relatively devoid of noise. To examine
the wave propagation characteristics more closely, a series of
frequencies was propagated into one particular bed configu-
ration. The acceleration amplitude of the left wall was main-
tained constant (effectively applying a constant force ampli-
tude to the bed), and the pressures at various locations were
monitored. The phase shift between the pressure detected at
the right wall and the displacement of the left wall was mea-
sured as a function of frequency. Straight line fits to those
graphs lead to average dimensionless group velocities of
0.0525 and 0.048, respectively, at the lower and upper sen-
sors. These values are in relatively good agreement with the
experimental measurements [see Fig. 18 (top)]. They also
exhibit the expected increase with depth in the bed.
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FIG. 20. Typical phase speeds calculated from the phase shift
between the output pressure (right wall) and the displacement of the
left wall. Measurements at 57 particle diameters (O) and 27 particle
diameters ((J) below the free surface.

Phase speeds were also calculated from that data and typi-
cal data is shown in Fig. 20. On average, the speed is roughly
constant with frequency, confirming the nondispersive nature
of wave propagation found in the experiments. As in the
experiments there are some significant departures from the
constant value. The departures are less scattered and more
repeatable than in the experiments but they have no obvious
explanation.

IX. SOME DETAILED ANALYSES
A. Nonlinear waves

The consequences of the nonlinearities inherent in the
particle contact dynamics have been most systematically ex-
plored in the simpler context of one-dimensional (1D) par-
ticle chains. Nesterenko analyzed the propagation of waves
in 1D chains and identified two different classes of solutions
[21]. In one class defined by particle displacements that are
small compared to the static overlap &, (caused by a given
mean compression force F;) and termed a “strongly com-
pressed chain,” Nesterenko shows that nonlinear waves are
governed by the Korteweg—de Vries equation [24,25] and the
system therefore exhibits solitary waves and solitons. These
have the characteristic that the width of the soliton increases
with decreasing amplitude. The other, “weakly compressed”
class is defined by particle displacements that are comparable
to or larger than the initial overlap &,. Nesterenko shows that
this leads to a different nonlinear wave equation but one that
also exhibits solitary wave solutions. However, these solitons
have the property that their width is independent of their
amplitude; it is equal to about five particle diameters. Experi-
ments on 1D chains have been carried out [26,27] and
largely substantiate these theoretical results though the en-
ergy loss mechanisms limit the range of the measurements.
The present paper indicates that these nonlinear phenomena
may also occur in 3D granular beds.

The present simulations of pulse propagation in granular
beds reveal pulse shapes (for example Fig. 12) whose shapes
are quite consistent with those predicted by Nesterenko (see
Ref. [14] for more details). The width of the “strongly com-
pressed” pulses increases with decreasing amplitude as
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FIG. 21. Frequency of the oscillations after the passing of the
initial peak plotted as a function of the mean pressure during the
oscillations. Measurements were made in PVC (O) and 3-mm glass
particles (OJ).

shown by comparing the primary and secondary peaks in
Fig. 12. Moreover, at smaller widths we also observed a
transition to waves whose width is independent of the ampli-
tude. The discrepancy is that the granular bed produces a
constant pulse width of the order of 100 particle diameters
rather than the 5 diameters of the 1D chain. Perhaps the
100-particle-diameter dimension is related to the typical
force chain length.

Despite the interesting similarities between the solitary
waves of theory and the semipermanent waves observed in
the present work, it is premature to draw a conclusive link
between the two. The semipermanent waves were observed
over short propagation distances due to high attenuation in
the experiments and a limited size of the computational do-
main in the simulations. To determine whether the semiper-
manent waves are in fact solitary waves, they would need to
be monitored over much greater propagation lengths.

B. Force chain ringing

We now shift our focus to the oscillations that are ob-
served to follow the passage of a single pulse through a
granular bed. Two different types of ringing were observed.
Short-duration oscillations were seen at elevated pressures
during [Fig. 5 (top), 41 ms and 65 ms widths] and just after
[Fig. 5 (bottom), 6 ms width] the piston motion. These were
characterized by a relatively smooth, sinusoidal shape and
were limited to a maximum of three periods with various
frequencies in the range 20—80 Hz. On the other hand, long-
duration oscillations (lasting as long as 20 periods) were ob-
served after the wave had passed. Their structure was com-
paratively noisy, but their frequency was consistently 20 Hz.
The short-duration oscillation frequencies are plotted against
the instantaneous mean pressure in Fig. 21. Note that this
range of frequencies, 20—80 Hz, is much too low to be
caused by natural vibrations of the transducer diaphragm or
the piston system. One possible explanation is that they re-
flect a natural frequency of the force chains through which
the waves travel.

In the force chain ringing scenario, one would expect the
frequency to increase with the confining stress on the chain.
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Thus, ringing about an elevated pressure level should occur
at a higher frequency than ringing about the static pressure.
Though there is significant scatter in Fig. 21, there does ap-
pear to be an increase in the frequency with the mean pres-
sure. Ringing about an elevated mean pressure consistently
occurs at a higher frequency than that about lower pressures.
This is consistent with the hypothesis that the oscillations are
natural vibrations of the force chains.

To further discussion, we estimate the natural frequency
of a force chain in a granular bed with Hertzian contacts
(force given by K,5%?) and an initial compression force F,
that implies an initial particle overlap &, between each pair
of particles. The linearized stiffness at each contact will then
be

dr 3 3

k:%: EKzﬁ(l)/zk:EKng})B. (6)
Assuming that the force amplitudes associated with the
pulses are much smaller than F|, the natural frequency f,,,, of
the chain can be calculated as f,,=CVk/m where m is the
mass of each particle and C is a factor that depends on the
number of particles in the chain and the boundary conditions
at the ends of the chain. In general, C decreases as the num-
ber of particles increases. For a chain of 100 particles with
fixed ends, C is about 1073, For glass beads, Vk/m is about
10° Hz if the initial compression force is taken as the over-
burden of 8 cm. The result is a frequency on the order of
100 Hz which is in the range of the experimental observa-
tions (see Fig. 21).

X. DISCUSSION

In general, this paper reveals the depth of the complex
issues associated with wave propagation in a granular bed.
Experiments and simulations both show that there are vari-
ous aspects to these complexities. First, and perhaps most
readily understood, are the complexities introduced by the
nonlinear response of the particle-particle contacts. These
have been quite exhaustively explored by Nesterenko and
others [28] in the context of one-dimensional particle chains
where two classes of nonlinear waves can be identified, re-
spectively for strongly and weakly compressed chains. We
show that the experiments and simulations both indicate two
similar regimes for wave propagation in a granular bed.
There are, however, some quantitative differences. For ex-
ample, the fixed solitary wave width for weakly compressed
waves appears to be about 100 particle diameters in a granu-
lar bed compared with 5 particle diameters in a one-
dimensional chain.

Another complexity is the ephemeral and fragile nature of
the force chains along which the pressure waves in a granular
bed are primarily transmitted. As previously identified by Liu
and Nagel (see also Jia et al.), this leads to considerable
difficulty in acquiring repeatable data on wave propagation
speeds and attenuation. In this paper the transmission of
single pulses and of continuous sinusoidal waves has been
explored both experimentally and through simulations.

The continuous excitation investigations confirm the con-
clusion of Liu and Nagel that waves below a critical fre-
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quency (identified by Jia er al.) are nearly nondispersive;
however, there are some minor variations in the wave speed
with frequency that are most apparent and repeatable in the
simulations and could be responsible for some weak disper-
sion. However, the attenuation is sufficiently strong that such
long-term effects cannot be observed in the experiments. We
also note that, like the wave propagation speeds, the attenu-
ation data exhibit considerable scatter. However, the mea-
surements are sufficiently accurate to confirm the results of a
dimensional analysis which shows that the wave speed is
primarily a function of the wave speed in the material of the
particles, Poisson’s ratio for that material, and the geometric
arrangement of the particles; it is not a function of particle
size. Nondimensional analysis also suggests that the attenu-
ation should be inversely proportional to particle size. Such a
dependence is not observed in the experiments, such that
further consideration needs to be given to the damping and
tangential friction components of the contact model.

Both the scatter in the measurements and the hysteretic
effects during frequency and amplitude sweeps were greater
in unconsolidated beds than in consolidated beds in which
particle mobility is reduced. The scatter is also greater for
larger ratios of particle size to transducer size since the mea-
surement then records an average over very few force chains.
This evidence is consistent with that of Liu and Nagel and
supports the conjecture that there is continual rearrangement
of the particles and particle chains as a result of the waves
themselves.
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The experiments and simulations utilizing single input
pulses revealed further aspects of wave propagation in granu-
lar beds. Though the pulses were rapidly attenuated with
distance (exponential decay at a greater rate in the plastic
than in the glass), it was nevertheless possible to identify
several basic phenomena. First, increasing disruption of the
force chains was observed as the pulse amplitude increased
(either by increasing the input pulse or by observing the
consequences at different penetrations into the granular bed).
Second, as mentioned above, the nonlinearity in the contact
point dynamics leads to two regimes of nonlinear waves just
as was predicted and observed in one-dimensional particle
chains by Nesterenko and others. Short input pulses lead to
transmitted pulses with a fixed width of about 100 particle
diameters (compared to the 5 particle diameters in one-
dimensional chains). Long input pulses lead to transmitted
waves consisting of a lead pulse and a train of trailing waves.
One conjecture which we put forward here is that these trail-
ing waves whose frequency is in the range 20-80 Hz (in-
creasing systematically with prevailing pressure) are caused
by a ringing of the force chains.

The simulations of the pulse propagation reveal further
details, such as the increasing distortion of the wave front as
the pulse progresses through the granular material and spe-
cific dependences of the wave propagation on other material
properties such as Poisson’s ratio (for details see Ref. [14]).
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